Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Integr Med ; 22(1): 83-92, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311542

RESUMO

OBJECTIVE: Obesity is a global health concern with management strategies encompassing bariatric surgery and anti-obesity drugs; however, concerns regarding complexities and side effects persist, driving research for more effective, low-risk strategies. The promotion of white adipose tissue (WAT) browning has emerged as a promising approach. Moreover, alisol B 23-acetate (AB23A) has demonstrated efficacy in addressing metabolic disorders, suggesting its potential as a therapeutic agent in obesity management. Therefore, in this study, we aimed to investigate the therapeutic potential of AB23A for mitigating obesity by regulating metabolic phenotypes and lipid distribution in mice fed a high-fat diet (HFD). METHODS: An obesity mouse model was established by administration of an HFD. Glucose and insulin metabolism were assessed via glucose and insulin tolerance tests. Adipocyte size was determined using hematoxylin and eosin staining. The expression of browning markers in WAT was evaluated using Western blotting and quantitative real-time polymerase chain reaction. Metabolic cage monitoring involved the assessment of various parameters, including food and water intake, energy metabolism, respiratory exchange rates, and physical activity. Moreover, oil red O staining was used to evaluate intracellular lipid accumulation. A bioinformatic analysis tool for identifying the molecular mechanisms of traditional Chinese medicine was used to examine AB23A targets and associated signaling pathways. RESULTS: AB23A administration significantly reduced the weight of obese mice, decreased the mass of inguinal WAT, epididymal WAT, and perirenal adipose tissue, improved glucose and insulin metabolism, and reduced adipocyte size. Moreover, treatment with AB23A promoted the expression of browning markers in WAT, enhanced overall energy metabolism in mice, and had no discernible effect on food intake, water consumption, or physical activity. In 3T3-L1 cells, AB23A inhibited lipid accumulation, and both AB23A and rapamycin inhibited the mammalian target of rapamycin-sterol regulatory element-binding protein-1 (mTOR-SREBP1) signaling pathway. Furthermore, 3-isobutyl-1-methylxanthine, dexamethasone and insulin, at concentrations of 0.25 mmol/L, 0.25 µmol/L and 1 µg/mL, respectively, induced activation of the mTOR-SREBP1 signaling pathway, which was further strengthened by an mTOR activator MHY1485. Notably, MHY1485 reversed the beneficial effects of AB23A in 3T3-L1 cells. CONCLUSION: AB23A promoted WAT browning by inhibiting the mTOR-SREBP1 signaling pathway, offering a potential strategy to prevent obesity. Please cite this article as: Han LL, Zhang X, Zhang H, Li T, Zhao YC, Tian MH, Sun FL, Feng B. Alisol B 23-acetate promotes white adipose tissue browning to mitigate high-fat diet-induced obesity by regulating mTOR-SREBP1 signaling. J Integr Med. 2024; 22(1): 83-92.


Assuntos
Colestenonas , Dieta Hiperlipídica , Obesidade , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Tecido Adiposo Branco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Glucose/metabolismo , Insulina/farmacologia , Lipídeos/farmacologia , Lipídeos/uso terapêutico , Mamíferos/metabolismo
2.
Nutrients ; 15(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37892414

RESUMO

Clostridium butyricum is a butyrate-producing microorganism which has beneficial effects on various diseases, including obesity. In our previous study, the anti-obesity Clostridium butyricum strain CCFM1299 (C20_1_1) was selected, but its anti-obesity mechanism was not clarified. Herein, CCFM1299 was orally administrated to high-fat-diet-treated C57BL/6J mice for 12 weeks to uncover the way the strain alleviates obesity. The results indicated that CCFM1299 alleviated obesity through increasing the energy expenditure and increasing the expression of genes related to thermogenesis in brown adipose tissue (BAT). Moreover, strain CCFM1299 could also affect the expression of immune-related genes in epididymal white adipose tissue (eWAT). This immunomodulatory effect might be achieved through its influence on the complement system, as the expression of the complement factor D (CFD) gene decreased significantly. From the view of metabolites, CCFM1299 administration increased the levels of ursodeoxycholic acid (UDCA) in feces and taurohyodeoxycholic acid (THDCA) in serum. Together, the anti-obesity potential of CCFM1299 might be attributed to the increase in energy consumption, the regulation of immune-related gene expression in eWAT, and the alteration of bile acid metabolism in the host. These provided new insights into the potential application of anti-obesity microbial preparations and postbiotics.


Assuntos
Clostridium butyricum , Animais , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Metabolismo Energético , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/metabolismo , Termogênese
3.
Methods Mol Biol ; 2662: 135-145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37076677

RESUMO

In response to cold induction, brown adipose tissues (BAT) and emerged brown-like adipocytes (beige adipocytes) in subcutaneous white adipose tissues (WAT browning/beiging) are activated. Thermogenesis is increased during glucose and fatty acid uptake and metabolism in adult humans and mice. This activation of BAT or WAT beiging to generate heat helps to counteract diet-induced obesity. This protocol applies the glucose analog radiotracer 18F-fluorodeoxyglucose (FDG), coupled with positron emission tomography and computed tomography (PET/CT) scanning to evaluate cold-induced thermogenesis in the active BAT (interscapular region) and browned/beiged WAT (subcutaneous adipose region) in mice. The PET/CT scanning technique not only can quantify cold-induced glucose uptake in well-known BAT and beige-fat depots but also helps to visualize the anatomical location of novel uncharacterized mouse BAT and beige fat where cold-induced glucose uptake is high. Histological analysis is further employed to validate signals of delineated anatomical regions in PET/CT images as bona fide mouse BAT or beiged WAT fat depots.


Assuntos
Tecido Adiposo Bege , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Adulto , Camundongos , Animais , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Bege/patologia , Tecido Adiposo Branco/diagnóstico por imagem , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/diagnóstico por imagem , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Proteína Desacopladora 1/metabolismo
4.
Am J Physiol Endocrinol Metab ; 324(4): E358-E373, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36856189

RESUMO

Cold acclimation and pharmacological peroxisome proliferator-activated receptor γ (PPARγ) activation have each earlier been shown to recruit brown adipose tissue (BAT) and beige adipocytes thermogenic machinery, enhancing uncoupling protein 1 (UCP1)-mediated thermogenic capacity. We here investigated whether cold acclimation and PPARγ agonism combined have additive effects in inducing brown and beige adipocytes UCP1 content and whether this translates into a higher thermogenic capacity and energy expenditure. C57BL/6J mice treated or not with pioglitazone (30 mg/kg/day) were maintained at 21°C or exposed to cold (7°C) for 15 days and evaluated for thermogenic capacity, energy expenditure and interscapular BAT (iBAT) and inguinal white adipose tissue (iWAT) mass, morphology, UCP1 content and gene expression, glucose uptake and oxygen consumption. Cold acclimation and PPARγ agonism combined synergistically increased iBAT and iWAT total UCP1 content and mRNA levels of the thermogenesis-related proteins PGC1a, CIDEA, FABP4, GYK, PPARa, LPL, GLUTs (GLUT1 in iBAT and GLUT4 in iWAT), and ATG when compared to cold and pioglitazone individually. This translated into a stronger increase in body temperature in response to the ß3-adrenergic agonist CL316,243 and iBAT and iWAT respiration induced by succinate and pyruvate in comparison to that seen in either cold-acclimated or pioglitazone-treated mice. However, basal energy expenditure, BAT glucose uptake and glucose tolerance were not increased above that seen in cold-acclimated untreated mice. In conclusion, cold acclimation and PPARγ agonism combined induced a robust increase in brown and beige adipocytes UCP1 content and thermogenic capacity, much higher than each treatment individually. However, our findings enforce the concept that increases in total UCP1 do not innately lead to higher energy expenditure.NEW & NOTEWORTHY Cold acclimation and PPARγ agonism combined markedly increase brown and white adipose tissue total UCP1 content and mRNA levels of thermogenesis-related proteins. Higher UCP1 protein levels did not result in higher energy expenditure. The high thermogenic capacity induced by PPARγ agonism in cold-exposed animals markedly increases animals' body temperature in response to the ß3-adrenergic agonist CL316,243.


Assuntos
Tecido Adiposo Branco , PPAR gama , Camundongos , Animais , Pioglitazona/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético/fisiologia , Aclimatação/fisiologia , Termogênese , Glucose/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Temperatura Baixa
5.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834900

RESUMO

The abscisic acid (ABA)/LANC-like protein 1/2 (LANCL1/2) hormone/receptor system regulates glucose uptake and oxidation, mitochondrial respiration, and proton gradient dissipation in myocytes. Oral ABA increases glucose uptake and the transcription of adipocyte browning-related genes in rodent brown adipose tissue (BAT). The aim of this study was to investigate the role of the ABA/LANCL system in human white and brown adipocyte thermogenesis. Immortalized human white and brown preadipocytes, virally infected to overexpress or silence LANCL1/2, were differentiated in vitro with or without ABA, and transcriptional and metabolic targets critical for thermogenesis were explored. The overexpression of LANCL1/2 increases, and their combined silencing conversely reduces mitochondrial number, basal, and maximal respiration rates; proton gradient dissipation; and the transcription of uncoupling genes and of receptors for thyroid and adrenergic hormones, both in brown and in white adipocytes. The transcriptional enhancement of receptors for browning hormones also occurs in BAT from ABA-treated mice, lacking LANCL2 but overexpressing LANCL1. The signaling pathway downstream of the ABA/LANCL system includes AMPK, PGC-1α, Sirt1, and the transcription factor ERRα. The ABA/LANCL system controls human brown and "beige" adipocyte thermogenesis, acting upstream of a key signaling pathway regulating energy metabolism, mitochondrial function, and thermogenesis.


Assuntos
Ácido Abscísico , Prótons , Animais , Humanos , Camundongos , Ácido Abscísico/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/genética , Glucose/metabolismo , Hormônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
6.
Lipids Health Dis ; 22(1): 9, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36670439

RESUMO

BACKGROUND: Astragalus polysaccharide (APS) is a key active ingredient isolated from Astragalus membranaceus that has been reported to be a potential treatment for obesity and diabetes by regulating lipid metabolism and adipogenesis, alleviating inflammation, and improving insulin resistance. However, whether APS regulates lipid metabolism in the context of cachexia remains unclear. Therefore, this study analysed the effects of APS on lipid metabolism and adipose expenditure in a heart failure (HF)-induced cardiac cachexia rat model.  METHODS: A salt-sensitive hypertension-induced cardiac cachexia rat model was used in the present study. Cardiac function was detected by echocardiography. The histological features and fat droplets in fat tissue and liver were observed by H&E staining and Oil O Red staining. Immunohistochemical staining, Western blotting and RT‒qPCR were used to detect markers of lipolysis and adipose browning in white adipose tissue (WAT) and thermogenesis in brown adipose tissue (BAT). Additionally, sympathetic nerve activity and inflammation in adipose tissue were detected. RESULTS: Rats with HF exhibited decreased cardiac function and reduced adipose accumulation as well as adipocyte atrophy. In contrast, administration of APS not only improved cardiac function and increased adipose weight but also prevented adipose atrophy and FFA efflux in HF-induced cachexia. Moreover, APS inhibited HF-induced lipolysis and browning of white adipocytes since the expression levels of lipid droplet enzymes, including HSL and perilipin, and beige adipocyte markers, including UCP-1, Cd137 and Zic-1, were suppressed after administration of APS. In BAT, treatment with APS inhibited PKA-p38 MAPK signalling, and these effects were accompanied by decreased thermogenesis reflected by decreased expression of UCP-1, PPAR-γ and PGC-1α and reduced FFA ß-oxidation in mitochondria reflected by decreased Cd36, Fatp-1 and Cpt1. Moreover, sympathetic nerve activity and interleukin-6 levels were abnormally elevated in HF rats, and astragalus polysaccharide could inhibit their activity. CONCLUSION: APS prevented lipolysis and adipose browning in WAT and decreased BAT thermogenesis. These effects may be related to suppressed sympathetic activity and inflammation. This study provides a potential approach to treat HF-induced cardiac cachexia.


Assuntos
Tecido Adiposo Marrom , Insuficiência Cardíaca , Ratos , Animais , Tecido Adiposo Marrom/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/prevenção & controle , Gastos em Saúde , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico , Inflamação/patologia
7.
Am J Physiol Endocrinol Metab ; 323(6): E517-E528, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351253

RESUMO

Typical vivarium temperatures (20-26°C) induce facultative thermogenesis in mice, a process attributable in part to uncoupling protein-1 (UCP1). The impact of modest changes in housing temperature on whole body and adipose tissue energetics in mice remains unclear. Here, we determined the effects of transitioning mice from 24°C to 30°C on total energy expenditure and adipose tissue protein signatures. C57BL/6J mice were housed at 24°C for 2 wk and then either remained at 24°C (n = 16/group, 8M/8F) or were transitioned to 30°C (n = 16/group, 8M/8F) for 4 wk. Total energy expenditure and its components were determined by indirect calorimetry. Interscapular brown adipose tissue (iBAT) and inguinal white adipose tissue (iWAT) proteins were quantified by Western blot and quantitative proteomics. Transitioning from 24°C to 30°C reduced total energy expenditure in both male (-25%) and female (-16%) mice, which was attributable to lower basal energy expenditure in males (-36%) and females (-40%). Total iBAT UCP1 protein content was 50% lower at 30°C compared with 24°C, whereas iWAT UCP1 protein content was similar between conditions. iBAT UCP1 protein content remained 20-fold greater than iWAT at 30°C. In iBAT and iWAT, 183 and 41 proteins were differentially expressed between 24°C and 30°C, respectively. iWAT proteins (257) differentially expressed between sexes at 30°C were not differentially expressed at 24°C. Thus, 30°C housing lowers total energy expenditure of mice when compared with an ambient temperature (24°C) that falls within the National Research Council's guidelines for housing laboratory mice. Lower iBAT UCP1 content accompanied chronic housing at 30°C. Furthermore, housing temperature influences sexual dimorphism in the iWAT proteome. These data have implications regarding the optimization of preclinical models of human disease.NEW & NOTEWORTHY Housing mice at 30°C reduced the basal and total energy expenditure compared with 24°C, which was accompanied by a reduction in brown adipose tissue UCP1 content. Proteomic profiling demonstrated the brown adipose tissue and white adipose tissue proteomes were largely influenced by housing temperature and sex, respectively. Therefore, 30°C housing revealed sexual dimorphism in the white adipose tissue proteome that was largely absent in animals housed at 24°C.


Assuntos
Proteômica , Termogênese , Humanos , Masculino , Feminino , Camundongos , Animais , Proteína Desacopladora 1/metabolismo , Camundongos Endogâmicos C57BL , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético
8.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142372

RESUMO

Obesity is associated to a low grade of chronic inflammation leading to metabolic stress, insulin resistance, metabolic syndrome, dislipidemia, cardiovascular disease, and even cancer. A Mediterranean diet has been shown to reduce systemic inflammatory factors, insulin resistance, and metabolic syndrome. In this scenario, precision nutrition may provide complementary approaches to target the metabolic alterations associated to "unhealthy obesity". In a previous work, we described a pomegranate extract (PomE) rich in punicalagines to augment markers of browning and thermogenesis in human differentiated adipocytes and to augment the oxidative respiratory capacity in human differentiated myocytes. Herein, we have conducted a preclinical study of high-fat-diet (HFD)-induced obesity where PomE augments the systemic energy expenditure (EE) contributing to a reduction in the low grade of chronic inflammation and insulin resistance associated to obesity. At the molecular level, PomE promotes browning and thermogenesis in adipose tissue, reducing inflammatory markers and augmenting the reductive potential to control the oxidative stress associated to the HFD. PomE merits further investigation as a complementary approach to alleviate obesity, reducing the low grade of chronic inflammation and metabolic stress.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Punica granatum , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Humanos , Inflamação/metabolismo , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Estresse Fisiológico , Termogênese
9.
Nature ; 609(7926): 361-368, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35790189

RESUMO

Brown adipose tissue (BAT) dissipates energy1,2 and promotes cardiometabolic health3. Loss of BAT during obesity and ageing is a principal hurdle for BAT-centred obesity therapies, but not much is known about BAT apoptosis. Here, untargeted metabolomics demonstrated that apoptotic brown adipocytes release a specific pattern of metabolites with purine metabolites being highly enriched. This apoptotic secretome enhances expression of the thermogenic programme in healthy adipocytes. This effect is mediated by the purine inosine that stimulates energy expenditure in brown adipocytes by the cyclic adenosine monophosphate-protein kinase A signalling pathway. Treatment of mice with inosine increased BAT-dependent energy expenditure and induced 'browning' of white adipose tissue. Mechanistically, the equilibrative nucleoside transporter 1 (ENT1, SLC29A1) regulates inosine levels in BAT: ENT1-deficiency increases extracellular inosine levels and consequently enhances thermogenic adipocyte differentiation. In mice, pharmacological inhibition of ENT1 as well as global and adipose-specific ablation enhanced BAT activity and counteracted diet-induced obesity, respectively. In human brown adipocytes, knockdown or blockade of ENT1 increased extracellular inosine, which enhanced thermogenic capacity. Conversely, high ENT1 levels correlated with lower expression of the thermogenic marker UCP1 in human adipose tissues. Finally, the Ile216Thr loss of function mutation in human ENT1 was associated with significantly lower body mass index and 59% lower odds of obesity for individuals carrying the Thr variant. Our data identify inosine as a metabolite released during apoptosis with a 'replace me' signalling function that regulates thermogenic fat and counteracts obesity.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Metabolismo Energético , Inosina , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Humanos , Inosina/metabolismo , Inosina/farmacologia , Camundongos , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo
10.
Biomolecules ; 11(12)2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34944402

RESUMO

Obesity is characterized by excessive accumulation of fat in the body, which is triggered by a body energy intake larger than body energy consumption. Due to complications such as cardiovascular diseases, type 2 diabetes (T2DM), obstructive pneumonia and arthritis, as well as high mortality, morbidity and economic cost, obesity has become a major health problem. The global prevalence of obesity, and its comorbidities is escalating at alarming rates, demanding the development of additional classes of therapeutics to reduce the burden of disease further. As a central energy sensor, the AMP-activated protein kinase (AMPK) has recently been elucidated to play a paramount role in fat synthesis and catabolism, especially in regulating the energy expenditure of brown/beige adipose tissue and the browning of white adipose tissue (WAT). This review discussed the role of AMPK in fat metabolism in adipose tissue, emphasizing its role in the energy expenditure of brown/beige adipose tissue and browning of WAT. A deeper understanding of the role of AMPK in regulating fat metabolism and energy expenditure can provide new insights into obesity research and treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Metabolismo Energético , Humanos , Lipólise , Masculino
11.
Diabetes ; 70(12): 2823-2836, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620617

RESUMO

Cyclic nucleotides cAMP and cGMP are important second messengers for the regulation of adaptive thermogenesis. Their levels are controlled not only by their synthesis, but also their degradation. Since pharmacological inhibitors of cGMP-specific phosphodiesterase 9 (PDE9) can increase cGMP-dependent protein kinase signaling and uncoupling protein 1 expression in adipocytes, we sought to elucidate the role of PDE9 on energy balance and glucose homeostasis in vivo. Mice with targeted disruption of the PDE9 gene, Pde9a, were fed nutrient-matched high-fat (HFD) or low-fat diets. Pde9a -/- mice were resistant to HFD-induced obesity, exhibiting a global increase in energy expenditure, while brown adipose tissue (AT) had increased respiratory capacity and elevated expression of Ucp1 and other thermogenic genes. Reduced adiposity of HFD-fed Pde9a -/- mice was associated with improvements in glucose handling and hepatic steatosis. Cold exposure or treatment with ß-adrenergic receptor agonists markedly decreased Pde9a expression in brown AT and cultured brown adipocytes, while Pde9a -/- mice exhibited a greater increase in AT browning, together suggesting that the PDE9-cGMP pathway augments classical cold-induced ß-adrenergic/cAMP AT browning and energy expenditure. These findings suggest PDE9 is a previously unrecognized regulator of energy metabolism and that its inhibition may be a valuable avenue to explore for combating metabolic disease.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , Metabolismo Energético/genética , Obesidade/genética , Termogênese/genética , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/prevenção & controle , Regulação para Cima/genética
12.
Life Sci ; 279: 119677, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081990

RESUMO

AIMS: Pancreastatin (PST) is a crucial bioactive peptide derived from chromogranin A (CHGA) proprotein that exhibits an anti-insulin effect on adipocytes. Herein, we investigated the effects of PST on brown adipose tissues (BAT) and white adipose tissue (WAT) in connection with uncoupling protein-1 (UCP-1) regulated energy expenditure in high fructose diet (HFrD) fed and vinylcyclohexenediepoxide (VCD) induced perimenopausal rats. MATERIAL AND METHODS: We administered VCD in rats for 17 consecutive days and fed HFrd for 12 weeks. After 12 weeks estradiol and progesterone levels were detected. Furthermore, detection of glucose tolerance, insulin sensitivity, and body composition revealed impaired glucose homeostasis and enhanced PST levels. Effects of enhanced PST on UCP-1 level in BAT and WAT of perimenopausal rats were further investigated. KEY FINDINGS: Reduced serum estradiol, progesterone, and attenuated insulin response confirmed perimenopausal model development. Furthermore, enhanced PST serum level and its increased expression in BAT and WAT downregulated the UCP-1 expression. Subsequently, impaired ATP level, NADP/NADPH ratio, citrate synthase activity, enhanced mitochondrial reactive oxygen species (ROS) generation and perturbed mitochondrial membrane potential, further exacerbated mitochondrial dysfunction, cellular ROS production, and promoted apoptosis. Interestingly, PST inhibition by PST inhibitor peptide-8 (PSTi8) displayed a favorable impact on UCP-1 and energy expenditure. SIGNIFICANCE: The aforementioned outcomes indicated the substantial role of PST in altering the UCP-1 expression and associated energy homeostasis. Hence our results corroborate novel avenues to unravel the quest deciphering PST's role in energy homeostasis and its association with perimenopause.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Cromogranina A/farmacologia , Metabolismo Energético , Frutose/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Resistência à Insulina , Menopausa , Ratos , Ratos Sprague-Dawley , Edulcorantes/administração & dosagem , Proteína Desacopladora 1/genética
13.
J Mol Endocrinol ; 67(1): 1-14, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33983894

RESUMO

Despite all modern advances in medicine, there are few reports of effective and safe drugs to treat obesity. Our objective was to screen anti-obesity natural compounds, and to verify whether they can reduce the body weight gain and investigate their molecular mechanisms. By using drug-screening methods, Phytohemagglutinin (PHA) was found to be the most anti-obesity candidate natural compound. Six-week-old C57BL/6J mice were fed with a high-fat diet (HFD) and intraperitoneally injected with 0.25 mg/kg PHA everyday for 8 weeks. The body weight, glucose homeostasis, oxygen consumption and physical activity were assessed. We also measured the heat intensity, body temperature and the gene expression of key regulators of energy expenditure. Prevention study results showed PHA treatment not only reduced the body weight gain but also maintained glucose homeostasis in HFD-fed mice. Further study indicated energy expenditure and uncoupling protein 1 (UCP-1) expression of brown adipose tissue (BAT) and white adipose tissue (WAT) in HFD-fed mice were significantly improved by PHA. In the therapeutic study, a similar effect was observed. PHA inhibited lipid droplet formation and upregulated mitochondrial-related gene expression during adipogenesis in vitro. UCP-1 KO mice displayed no differences in body weight, glucose homeostasis and core body temperature between PHA and control groups. Our results suggest that PHA prevent and treat obesity by increasing energy expenditure through upregulation of BAT thermogenesis.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Obesidade/metabolismo , Obesidade/patologia , Fito-Hemaglutininas/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Produtos Biológicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Fito-Hemaglutininas/uso terapêutico , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Aumento de Peso/efeitos dos fármacos
14.
Cell Death Dis ; 12(4): 362, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824276

RESUMO

Adhesion G protein-coupled receptor A1 (ADGRA1, also known as GPR123) belongs to the G protein-coupled receptors (GPCRs) family and is well conserved in the vertebrate lineage. However, the structure of ADGRA1 is unique and its physiological function remains unknown. Previous studies have shown that Adgra1 is predominantly expressed in the central nervous system (CNS), indicating its important role in the transduction of neural signals. The aim of this study is to investigate the central function of Adgra1 in vivo and clarify its physiological significance by establishing an Adgra1-deficient mouse (Adgra1-/-) model. The results show that Adgra1-/- male mice exhibit decreased body weight with normal food intake and locomotion, shrinkage of body mass, increased lipolysis, and hypermetabolic activity. Meanwhile, mutant male mice present elevated core temperature coupled with resistance to hypothermia upon cold stimulus. Further studies show that tyrosine hydroxylase (TH) and ß3-adrenergic receptor (ß3-AR), indicators of sympathetic nerve excitability, are activated as well as their downstream molecules including uncoupling protein 1 (UCP1), coactivator 1 alpha (PGC1-α) in brown adipose tissue (BAT), and hormone-sensitive lipase (HSL) in white adipose tissue (WAT). In addition, mutant male mice have higher levels of serum T3, T4, accompanied by increased mRNAs of hypothalamus-pituitary-thyroid axis. Finally, Adgra1-/- male mice present abnormal activation of PI3K/AKT/GSK3ß and MEK/ERK pathways in hypothalamus. Overexpression of ADGRA1 in Neuro2A cell line appears to suppress these two signaling pathways. In contrast, Adgra1-/- female mice show comparable body weight along with normal metabolic process to their sex-matched controls. Collectively, ADGRA1 is a negative regulator of sympathetic nervous system (SNS) and hypothalamus-pituitary-thyroid axis by regulating PI3K/AKT/GSK3ß and MEK/ERK pathways in hypothalamus of male mice, suggesting an important role of ADGRA1 in maintaining metabolic homeostasis including energy expenditure and thermogenic balance.


Assuntos
Tecido Adiposo Branco/metabolismo , Hipotálamo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo Energético/fisiologia , Masculino , Camundongos , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Sistema Nervoso Simpático/metabolismo , Glândula Tireoide/metabolismo
15.
Nat Metab ; 3(3): 428-441, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33758424

RESUMO

Obesity reduces adipocyte mitochondrial function, and expanding adipocyte oxidative capacity is an emerging strategy to improve systemic metabolism. Here, we report that serine/threonine-protein kinase 3 (STK3) and STK4 are key physiological suppressors of mitochondrial capacity in brown, beige and white adipose tissues. Levels of STK3 and STK4, kinases in the Hippo signalling pathway, are greater in white than brown adipose tissues, and levels in brown adipose tissue are suppressed by cold exposure and greatly elevated by surgical denervation. Genetic inactivation of Stk3 and Stk4 increases mitochondrial mass and function, stabilizes uncoupling protein 1 in beige adipose tissue and confers resistance to metabolic dysfunction induced by high-fat diet feeding. Mechanistically, STK3 and STK4 increase adipocyte mitophagy in part by regulating the phosphorylation and dimerization status of the mitophagy receptor BNIP3. STK3 and STK4 expression levels are elevated in human obesity, and pharmacological inhibition improves metabolic profiles in a mouse model of obesity, suggesting STK3 and STK4 as potential targets for treating obesity-related diseases.


Assuntos
Adipócitos/metabolismo , Metabolismo Energético , Mitofagia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Obesidade/prevenção & controle , Obesidade/terapia , Proteínas Serina-Treonina Quinases/genética , Serina-Treonina Quinase 3
16.
Biomed Pharmacother ; 138: 111491, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33744755

RESUMO

BACKGROUND: We had reported that cajanolactone A (CLA) from Cajanus cajan dose-dependently inhibited ovariectomy-induced obesity and liver steatosis in mice, showing potential to prevent postmenopausal obesity and fatty liver. In this study, the role of CLA in the regulation of energy and lipid homeostasis was investigated. METHODS: Ovariectomized mice treated with CLA or vehicle for 12 weeks were performed a 48 h monitoring for energy metabolism and food uptake. After that, hypothalami, perigonadal (pWATs), inguinal (iWATs) and brown (BATs) adipose tissues, livers, sera, and fecal and cecal contents were collected and analyzed. FINDINGS: In CLA-treated mice, we observed reduced food uptake; increased energy expenditure; inhibited expression of orexigenic genes (ORX, ORXR2, pMCH and Gal) in the hypothalami, of lipogenic genes (CD36, SREBP-1c, ChREBP, PPARγ) in the livers, and of lipid storage proteins in the WATs (FSP27, MEST and caveolin-1) and livers (FSP27, Plin2 and Plin5); stimulated expression of metabolism-related proteins (pATGL and Echs1) in the adipose tissues and of thermogenic protein (UCP1) in the inguinal WATs; increased BAT content; increased mitochondria in the pWATs and livers; inhibited angiogenesis in the pWATs; and altered gut microbiome diversity with an increased abundance of Bacteroides. INTERPRETATION: CLA prevents ovariectomy-induced obesity and liver steatosis via regulating energy intake and lipid synthesis/storage, promoting UCP1-dependent heat production, and protecting the mitochondrial function of hepatocytes and adipocytes. The improved gut microecology and inhibited angiogenesis may also contribute to the anti-obese activity of CLA.


Assuntos
Cajanus , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Estilbenos/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Feminino , Lipogênese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ovariectomia/efeitos adversos , Ovariectomia/tendências , Estilbenos/isolamento & purificação , Estilbenos/uso terapêutico
17.
Phytomedicine ; 82: 153457, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33444942

RESUMO

BACKGROUND: The enhancement of energy expenditure has attracted attention as a therapeutic target for the management of body weight. Withaferin A (WFA), a major constituent of Withania somnifera extract, has been reported to possess anti-obesity properties, however the underlying mechanism remains unknown. PURPOSE: To investigate whether WFA exerts anti-obesity effects via increased energy expenditure, and if so, to characterize the underlying pathway. METHODS: C57BL/6 J mice were fed a high-fat diet (HFD) for 10 weeks, and WFA was orally administered for 7 days. The oxygen consumption rate of mice was measured at 9 weeks using an OxyletPro™ system. Hematoxylin and eosin (H&E), immunohistochemistry, immunoblotting, and real-time PCR methods were used. RESULTS: Treatment with WFA ameliorated HFD-induced obesity by increasing energy expenditure by improving of mitochondrial activity in brown adipose tissue (BAT) and promotion of subcutaneous white adipose tissue (scWAT) browning via increasing uncoupling protein 1 levels. WFA administration also significantly increased AMP-activated protein kinase (AMPK) phosphorylation in the BAT of obese mice. Additionally, WFA activated mitogen-activated protein kinase (MAPK) signaling, including p38/extracellular signal-regulated kinase MAPK, in both BAT and scWAT. CONCLUSION: WFA enhances energy expenditure and ameliorates obesity via the induction of AMPK and activating p38/extracellular signal-regulated kinase MAPK, which triggers mitochondrial biogenesis and browning-related gene expression.


Assuntos
Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Obesidade/tratamento farmacológico , Termogênese/efeitos dos fármacos , Vitanolídeos/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/metabolismo , Termogênese/genética , Proteína Desacopladora 1/metabolismo , Withania/química , Vitanolídeos/farmacologia
18.
FEBS J ; 288(7): 2257-2277, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33089625

RESUMO

Dietary protein restriction has been demonstrated to improve metabolic health under various conditions. However, the relevance of ageing and age-related decline in metabolic flexibility on the effects of dietary protein restriction has not been addressed. Therefore, we investigated the effect of short-term dietary protein restriction on metabolic health in young and aged mice. Young adult (3 months old) and aged (18 months old) C57Bl/6J mice were subjected to a 3-month dietary protein restriction. Outcome parameters included fibroblast growth factor 21 (FGF21) levels, muscle strength, glucose tolerance, energy expenditure (EE) and transcriptomics of brown and white adipose tissue (WAT). Here, we report that a low-protein diet had beneficial effects in aged mice by reducing some aspects of age-related metabolic decline. These effects were characterized by increased plasma levels of FGF21, browning of subcutaneous WAT, increased body temperature and EE, while no changes were observed in glucose homeostasis and insulin sensitivity. Moreover, the low-protein diet used in this study was well-tolerated in aged mice indicated by the absence of adverse effects on body weight, locomotor activity and muscle performance. In conclusion, our study demonstrates that a short-term reduction in dietary protein intake can impact age-related metabolic health alongside increased FGF21 signalling, without negatively affecting muscle function. These findings highlight the potential of protein restriction as a strategy to induce EE and browning of WAT in aged individuals.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Metabolismo Energético/genética , Fatores de Crescimento de Fibroblastos/genética , Fatores Etários , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Restrição Calórica , Proteínas Alimentares/metabolismo , Humanos , Camundongos , Transdução de Sinais
19.
Anal Biochem ; 611: 113935, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32898480

RESUMO

White adipose tissue (WAT) represents a major site of triacylglycerol energy storage and is directly associated with metabolic disorders. Mitochondria regulate cellular energy expenditure and are active in WAT. Although isolated mitochondria have been classically used to assess their functions, several artifacts can be introduced by this approach. Furthermore, important limitations exist in the available methods to determine mitochondrial physiology in permeabilized WAT. Here, we established and validated a method for functional evaluation of mice mesenteric WAT (mWAT) mitochondria by using MEchanical Permeabilization and LIpid DEpletion (MEPLIDE) coupled to high-resolution respirometry. We observed that mild stirring of mWAT for 20 min at room temperature with 4% fatty acid-free albumin (FAF-BSA) followed by 50 min without FAF-BSA selectively permeabilized white adipocytes plasma membrane. In these conditions, mWAT mitochondria were intact, exhibiting succinate-induced respiratory rates that were sensitive to classical oxidative phosphorylation modulators. Finally, the respiratory capacity of mWAT in female mice was significantly higher than in males, an observation that agrees with reported data. Therefore, the functional assessment of mWAT mitochondria through MEPLIDE coupled to high resolution respirometry proposed here will contribute to a better understanding of WAT biology in several pathophysiological contexts.


Assuntos
Tecido Adiposo Branco , Lipídeos/química , Mitocôndrias , Tecido Adiposo Branco/química , Tecido Adiposo Branco/metabolismo , Animais , Feminino , Masculino , Camundongos , Mitocôndrias/química , Mitocôndrias/metabolismo , Permeabilidade
20.
Nutrients ; 12(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443555

RESUMO

Sesamol found in sesame oil has been shown to ameliorate obesity by regulating lipid metabolism. However, its effects on energy expenditure and the underlying molecular mechanism have not been clearly elucidated. In this study, we show that sesamol increased the uncoupling protein 1 (Ucp1) expression in adipocytes. The administration of sesamol in high-fat diet (HFD)-fed mice prevented weight gain and improved metabolic derangements. The three-week sesamol treatment of HFD-fed mice, when the body weights were not different between the sesamol and control groups, increased energy expenditure, suggesting that an induced energy expenditure is a primary contributing factor for sesamol's anti-obese effects. Consistently, sesamol induced the expression of energy-dissipating thermogenic genes, including Ucp1, in white adipose tissues. The microarray analysis showed that sesamol dramatically increased the Nrf2 target genes such as Hmox1 and Atf3 in adipocytes. Moreover, 76% (60/79 genes) of the sesamol-induced genes were also regulated by tert-butylhydroquinone (tBHQ), a known Nrf2 activator. We further verified that sesamol directly activated the Nrf2-mediated transcription. In addition, the Hmox1 and Ucp1 induction by sesamol was compromised in Nrf2-deleted cells, indicating the necessity of Nrf2 in the sesamol-mediated Ucp1 induction. Together, these findings demonstrate the effects of sesamol in inducing Ucp1 and in increasing energy expenditure, further highlighting the use of the Nrf2 activation in stimulating thermogenic adipocytes and in increasing energy expenditure in obesity and its related metabolic diseases.


Assuntos
Tecido Adiposo Branco/metabolismo , Benzodioxóis/farmacologia , Metabolismo Energético/efeitos dos fármacos , Obesidade/metabolismo , Fenóis/farmacologia , Proteína Desacopladora 1/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Animais , Técnicas de Cultura de Células , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Camundongos , Camundongos Obesos , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA